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Uniform Waveguides with Arbitrary Cross$ection

Considered by the Point~Matching Method

H. Y. YEE AND N. F.

Absfracf—The point-matching method applies to the problem of

wave propagation in many uniform waveguides of very general cross-

sections. The boundary conditions are satisfied at a finite number of

points on the guide wall only. This method applies when the contour

of the cross section of the guide is a closed curve, the function of

which is single-valued. The validity of the point-matching method is

demonstrated qualitatively. Examples show that accurate values of

cutoff wave numbers can be achieved easily.

1. INTRODUCTION

T
HE PROBLEM of electromagnetic wave propa-

gation in hollow-piped waveguides has been of

considerable interest in recent years. While the

basic theory goes back to the days of h~axwell, the ap-

plications to certain types of waveg uides have been

accomplished in the last few decades.

Guides of certain shapes, rectangular, circular, el-

liptical, and parabolic have been studied extensively.

The solutions of the wave equations subjected to the

pertinent boundary conditions for such configurations

are relatively easy to obtain because of the separability

of the equations in the cross-sectional coordinate sys-

tems. Since the previously mentioned waveguides can-

not fulfill many modern engineering requirements,

knowledge of waveguides with complicated cross sec-

tions is desirable. Unfortunately, the method of separa-

tion of variables fails for problems other than the con-

ventional types. Consequently, approximate techniques

must be utilized.

Waveguides with somewhat complicated cross sec-

tions were first investigated by Cohn [1] in a study of

ridge guides, in 1947. After that, many authors [2 ]–

[6] studied the properties of waveguides with different

cross sections. Recently, Illeinke, et al. [7], and Tischer

and Yee [8], [9] used the conformal mapping method

along with various approximation techniques to solve

the boundary-value problems for guides with general

cross sections. However, analytical conformal trans-

formations, in general, cannot be easily found.

In this paper an approximate technique, called the

point-matching method, is introduced which can be ap-

plied to uniform waveguides of very general cross sec-

tions. The only limitation on the cross section is that the
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representative function of the closed contour is single-

valued in the radical direction.

The calculations of the properties of waveguides by

this method are simple if a digital computer is accessible.

The accuracy of the method is demonstrated by apply-

ing it to a square guide. An error of 0.05 percent for the

cutoff wave number of the dominant mode can easily

be obtained. The degeneracies can also be located. Mjith

the knowledge of the field expressions, the power trans-

mitted, and the attenuation constant due to the finite

conductivity of the guide wall may be evaluated by

numerical methods.

11. THEORY

Consider the air-filled hollow-piped uniform wave-

guide of an arbitrary cross section with a coordinate

system as shown in Fig. 1 (a). Let an electromagnetic

wave propagate in the z direction. The wave equation

for this system, assuming a time-harmonic dependence

[exp (jd) ], is given by [10]

(v,’ + k’)$ = o (1)

where

kz = kOZ – k,s

koz = OJ2/.LOE0

kg = 27r/hQ.

The quantity h, is the guide wavelength, and V,’ is the

two-dimensional transverse Laplacian operator. ‘The

wave function ~ = H, for TE (transverse electric) wave

modes, and ~ = E, for Tlbl (transverse magnetic) wave

modes. The eigenfunction ~ must satisfy either Diricldet

or Neumann boundary conditions. The eigenvalue prob-

lem consists of finding suitable solutions of (1) subjected

to the pertinent boundary conditions, and determining

the eigenvalues k. With the knowledge of longitudinal

components E, or H,, the transverse field components

can be computed by [10]

~, = (jkJk’) [– V,E. + (cqq/kJz X (vA)] (2)

~, = (–jkJk2) [(coco)kg)i X (V,E,) + v,H.] (3)

where z is a unit vector in the z directicm. The guide

impedance, power transfer, and the attenuation due to

the finite conductivity of the guide walls can be evalu-

ated by conventional methods.
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Fig. 1. (a) A waveguide with an arbitrary cross section and a
relevant coordinate system. (b) The angle am at point (rm, Om)
on thecross-sectional contour.

For waveguides with simple geometrical cross sec-

tions, the eigenfunction ~ is obtained by solving (1), in

which the variables are usually separable. If the guide’s

cross-sectional coordinate system is not one of the

separable coordinate systems, namely, rectangular,

polar, elliptical, or parabolic, the method of separation

of variables fails. However, the general solution of (1)

in one of the separable coordinate systems is still a solu-

tion of a waveguide with an arbitrary cross section. The

problem is then how to impose the boundary conditions

for this solution and how to find the eigenvalues.

It is convenient to express the general solution of (1)

in polar coordinates as follows:

# = ~ ~~(kr)(~~ cos nfl -1- B. sintitl) (4)
n=o

where r and 6 are the polar coordinates. J. is the Bessel

function of first kind, An and B. are constants to be

determined by the boundary conditions. Assuming that

the series in (4) converges rapidly and uniformly for the

cases under consideration, the solution may be approxi-

mated by a finite number of terms

# ~ S ~~(kr)(~~ cos M + B. sin @. (5)
n= o

In general, it is difficult to have (4) or (5) satisfy the

boundary conditions at every point around the closed

contour C of a generally shaped guide such as the one

sketched in Fig. 1 (a). However, it is possible to require

(5) to satisfy the boundary conditions at a finite number

of points, namely 2N+ 1. Let the points (rO, 00), (rl, 01),

(?’,, 0,), ..0, (?’m, em), . . . . (?z~, Oz~) be a set of chosen

points around the cross section. The boundary condi-

tions at these points for TM modes require

~ (A. cos Mm + B. sin m9n)~n(kr~) = O (6)
.=0

and for TE modes require

N

ii. Vt ~ (A. cos nOm + B. sin tzOm)J. (krm) = O (7)
n= o

where m=O, 1, 2, . . . , 2N, and ti is the unit vector

normal to the surface. More precisely (7) may be writ-

ten in the following form:

N

krm ~ (A. cos ntlm + B. sin nOm)J.’ (krm)
n=o

+ tan am ~ w(– An sin n% + B. cos nO~)Jn(kr~) = O (8)
.=O

where cos am= c. f~, and ?~ is the unit vector in the r

direction at point (r~, d~) as shown in Fig. 1(b). The

angle am may be described in the following manner. Let

the contour C of the cross section be described by

f(%, y) = o;

where

x=rcos O and y=rsintl

then

tan am = – (1 + Fm tan O)/(Fm – tan O)

where

dy
F. = F(xm, Y.) = —

dx ~=um; .-zm”

Each of (6) and (8) forms a system of 2N+ 1 homo-

geneous algebraic equations of 2N+ 2 unknowns;

namely, xl n, B., and k. To obtain nontrivial solutions of

the expansion coefficients A. and B., the determinant

of these coefficients must be zero. That is

D(k) = det \ d,j I = O (9)

where

dij = Ji(kr~) cos iL9j; i=o, 1,2, . . ..A7

d~j = J;-N(krj) sin (i – N)Oj; i= N+l, . ..21VIV
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Fig. 2. Contours of the waveguide’s cross section; —
_— — obtained by ( 10J

original;

for TLI modes; and

d,j = krj cos i9,Ji’ (kr,) – i tan cq sin iO~Ji(kr,);

; =0,1,2,.. .,N

dij = kr~ sin (i – N)8,J’i-iv(kr~)

+ (i – Ar) tan a, cos (i – N) O,Yi-~(kr~);

~=. N+l, . . ..2LV

for TE modes. The roots of (9) determine the eigen-

values k. There are an infinite number of roots, each of

which corresponds to a wave mode. In general, the roots

of higher order modes (larger values of k) calculated by

this numerical method are less accuralte than the roots

of lower order modes. The accuracy may be improved,

however, by extending N to larger numbers. In other

words, more points on the contour are chosen to satisfy

the boundary conditions.

Having determined the eigenvalue k for a specific

mode, the expansion coefficients An and B. can readily

be found from (6) or (8).

111. QUALITATIVE DISCUSSIOIW OF THE

POINT-MATCHING METI~OD

In the previous discussion, the eigenfunction I) is ex-

pressed in terms of a set of functions

[

Cos ?20

1
6 ‘Jn(Win NO ,

and the boundary conditions are satisfied at only a

finite number of points around the ccmducting surface.

The completeness of the set of functions {@n} and the

fulfillment of boundary conditions are not established,

and will not be proved in this paper. l[nstead, the valid-

ity of the point-matching method will be presented from

a qualitative point of view as follows.

For a given TM wave mode, the expansion coefficients

An and B., and the eigenvalue k in (5) can be found by

the method described previously. Since (5) is a real

analytic function of r and 0, and is periodic in the angu-

lar direction, then the equation

~ (An cos nO. + B. sin nO,)J~(kr.) = O (10)
TL41

describes a closed curve. The subscript c denotes the

boundary. The curve connects the chosen points, and

may deviate from the original contour of the cross sec tion

as shown in Fig. 2. Having described the field by I(5),

and the boundary conditions by (10), then (5) and the

value of k are the exact eigenfunction and the eigen-

value respectively, for a waveguide of this TM mode

with a cross section defined by (10). If the intervals be-

tween the chosen points are sufficiently small, the devia-

tion between the original curve and that described by

(10) is expected to be negligibly small. Therefore, (5)

and k computed by the point-matching method can be

considered as a good approximate solution for the cn-ig-

inal waveguide.

Similar argument can be applied when (,5) represents

Ha for the TE wave modes. When the boundary condi-

tions are applied at the chosen points, the resulting

equation is

N

krc ~ (An cos nil. + B. sin nOJJtt’ (kr.)
%=0

+ tan a ~ n(– An sin no~ + l% cos NO,)J~(krJ = O (11)
.=O

where

1 dr
~__ -

r di3 c

The solution of (1 1), which is a nonlinear first-order

differential equation, is not known at the present time.

Since the equation is analytic everywhere,, it can be

linearized so that it is valid only in small regions around

the chosen points. If the intervals between the points

are made sufficiently small, the neighboring regions cwer-

lap as illustrated in Fig. 3. Solutions start at the chosen

points along the direction perpendicular to the known

normal vectors at the points. Two neighboring normal

vectors are assumed almost to be parallel. Since the

trajectories of a nonlinear differential equation cannot

intersect each other for a normal system [11], the solu-
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point 1.

Fig.3. Solutionsof (ll)at two adjacent points.
———— exact; —-—— linearized.

tions extended from two neighboring points are then

connected smoothly. The possibility of intersection is

due to the approximation of linearization. This argu-

ment is confirmed by the excellent agreement of the cut-

off wave numbers calculated by this method with the

exact solutions as shown in Section V. Therefore, (11)

represents a closed contour at which ~. satisfies Neu-

mann boundary condition. This contour is expected t.o

be a close approximation of the original cross section if

the intervals between the chosen points are sufficiently

small.

IV. LIMITATIONS OF THE h’fETHOD

While the point-matching method offers a new way

for solving boundary-value problems of waveguides of

arbitrary cross sections, it does have limitations to its

applications which can be seen from previous analYsis,

namely:

1) The boundary line of the waveguide’s cross section

must be closed, since (10) and (11) describe closed con-

tours which are good approximations of the waveguide’s

cross section.

2) The representative function of the closed curve

must be single-valued in the r direction. For every cor~-

stant O, there is one and only one value of r on the same

contour [(10) and (11) actually describe a family of

closed contours; one encloses the other ] where (10) and

(11) are satisfied.

V. EXAMPLES

The first example one may think of is the circular

waveguide. If a is the radius, then the radial coordinates

of the chosen points around the periphery are VO= rl
=y2= . . . = rZN = a, and (9) is readily reducible to the

exact solutions.

To demonstrate the accuracy of the point-matching

method applied to waveguides with noncircular cross

sections, the cutoff wave numbers of elliptical and square

waveguide were calculated and compared with the exact

solutions.

The cross section of the elliptical waveguide under

consideration is defined by

(z/1.5431)’ + (y/1.1752)2 = u’.

Since the ellipse is symmetric with respect to the x axis,

the field distributions inside the guide are either sym-

metric or antisymmetric. In the following discussion,

~,ave modes with longitudinal field component sym-

metric with respect to the x axis are called even modes,

and the modes with longitudinal field antisymmetric

with respect to the x axis are called odd modes. With

this classification, the sine terms in (5) are omitted for

even modes, while the cosine terms are omitted for odd

modes. For the present ellipse, only nine points were

chosen on the upper periphery for even modes, and

seven points were chosen for odd modes. Table I lists

the cutoff wave numbers for the TNI and TE modes

calculated by the point-matching method and compared

with those calculated from Chu’s curves [12], and those

calculated by the method of conformal mapping [9].

Note that the accuracy of the wave numbers calculated

from Chu’s curves are good only to two places.

Similar calculations for a square waveguide, as a sec-

ond example, show that excellent accuracy can be

achieved using the point-matching method, even though

sharp corners are present. If a square of width 2a is

placed with its center at the origin of the coordinate

system, then symmetry with respect to the x axis is

obtained. The cutoff wave numbers ku of TM modes

calculated by the point-matching method are listed in

Table II and compared with the exact values, Thirteen

points were used to calculate the values of cutoff wave

numbers for both even and odd modes. The error in the

calculation for the lowest order mode TlbIll is less than

0.05 percent. From Table II, the double degeneracy of

TMlt and TN’S1 can be observed, when finding the roots

of (9). The function D(k) passes through a minimum

which is almost zero at ka = 4.9670. In the case of Thlzl

and TM4Z, the two roots are very close together. The

separation, however, using eleven points is larger than

that when thirteen points are used for the calculation.

The cutoff wave numbers of even TE modes calcu-

lated by using thirteen points are listed in Table III.

The double degeneracy of TEZO and TEOZ is also ob-

served.

At the corner points of the preceding calculations, the

normals were taken in the direction of the bisectors of

the angles. This choice is shown to be valid by the ex-

cellent agreement between the exact and the approxi-

mate values.
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TABLE I

COMPARISON OF CUTOFF N’AVE~TUMBERS, ka OFAN
ELLIPTICAL JVAVEGUIDE

Point-
Mode Classification Ma;;:dg Chu Conformal

Mapping

TM r)l even 1 817 1.8 —

TM,, even 2.694 2,7 —

TM,l odd 3.080 3.1 3.08

TivI?l odd 3.873 3.88

TE,, even 1 .20.4 j,z – 1 .jo~

TE o, I even
I

3.023 I 3.0
1

—

TABLE II

COMPARISON OF TM CUTOFF ~yAVENUMBER kUOF A SQUARE
WAVEGUIDE OF LVIDTH 2a

TM IClassification IPoint-hIatchin~
Method I Exact

11 even ~ ,~204 2,~’2~4

21 even 3.5102 – 3.5124

13,31 even 4.9670 4.9673

23 even 5.6505 – 5.6636

41 even 6.5523 – 6.4766

33 even 6.6651 6.6643

43 even 7.9779 7.8540

22 odd 4.4428 4,4429

32 odd 5.6622 — .5.6636

14 odd 6.4763 — 6.4766

24,42

I
odd I 702+3

1

7.0248
7.0253

34 odd 7,8102 7.8540

52 odd 8.%053 8.4590

TABLE III

COMPARISON OF EVEN TE WAVE NUMBERS ka OF A SQUARE
WAVEGUIDE OF WUJTH 2a

TE I Poinfit-;}dhing I Exact

10 1.5708 1.5708

20,02 3.142 3.1416

12 3.5129 3.5124

22 4.4427 4 4429

30 4.7138 4.712-I
——

32 5.6671 5.6636

40 6.4673 — 6.2832

VI. CONCLUSION

The point-matching method offers a new way of scliv-

ing boundary-value problems of hollow-piped uniform

waveguides when the method of separaticln tails. This

numerical technique ~vas applied to square and ellipti-

cal waveguides in order to demonstrate t’hat excellent

accuracy in calculating the cutoff wave numbers can

easily be determined. “1’he boundary conditions were i m-

reposed at only a finite number of points along the con-

tour of the cross section. The boundary conditions at

points other than the chosen ones are satisfied apprc)xi-

mately if the contour of the viaveguide’s cross section is

closed and its representative function is single-valued.

When a particular waveguide is considered by the point-

matching method, then there exists a contc,ur where the

boundary conditions are satisfied, and it alleviates from

the original cross section. The deviation will be im-

proved by increasing the number of chosen points. The

degeneracies can also be observed by this method,

IHaving found the cutoff wave numbers for a wave-

guide, the \vave function can then be determined. ‘l’he

transferred power, attenuation constant, the field pat-

tern, and the current distribution are readily obtainable

by numerical methods.
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