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Abstract—The point-matching method applies to the problem of
wave propagation in many uniform waveguides of very general cross-
sections. The boundary conditions are satisfied at a finite number of
points on the guide wall only. This method applies when the contour
of the cross section of the guide is a closed curve, the function of
which is single-valued. The validity of the point-matching method is
demonstrated qualitatively. Examples show that accurate values of
cutoff wave numbers can be achieved easily.

I. INTRODUCTION

HE PROBLEM of electromagnetic wave propa-
Tgation in hollow-piped waveguides has been of

considerable interest in recent years. While the
basic theory goes back to the days of Maxwell, the ap-
plications to certain types of waveguides have been
accomplished in the last few decades.

Guides of certain shapes, rectangular, circular, el-
liptical, and parabolic have been studied extensively.
The solutions of the wave equations subjected to the
pertinent boundary conditions for such configurations
are relatively easy to obtain because of the separability
of the equations in the cross-sectional coordinate sys-
tems. Since the previously mentioned waveguides can-
not fulfill many modern engineering requirements,
knowledge of waveguides with complicated cross sec-
tions is desirable. Unfortunately, the method of separa-
tion of variables fails for problems other than the con-
ventional types. Consequently, approximate techniques
must be utilized.

Waveguides with somewhat complicated cross sec-
tions were first investigated by Cohn [1] in a study of
ridge guides, in 1947. After that, many authors [2]-
[6] studied the properties of waveguides with different
cross sections. Recently, Meinke, et al. [7], and Tischer
and Yee [8], [9] used the conformal mapping method
along with various approximation techniques to solve
the boundary-value problems for guides with general
cross sections. However, analytical conformal trans-
formations, in general, cannot be easily found.

In this paper an approximate technique, called the
point-matching method, is introduced which can be ap-
plied to uniform waveguides of very general cross sec-
tions. The only limitation on the cross section is that the
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representative function of the closed contour is single-
valued in the radical direction.

The calculations of the properties of waveguides by
this method are simple if a digital computer is accessible.
The accuracy of the method is demonstrated by apply-
ing it to a square guide. An error of 0.05 percent for the
cutoff wave number of the dominant mode can easily
be obtained. The degeneracies can also be located. With
the knowledge of the field expressions, the power trans-
mitted, and the attenuation constant due to the finite
conductivity of the guide wall may be evaluated by
numerical methods.

II. THEORY

Consider the air-filled hollow-piped uniform wave-
guide of an arbitrary cross section with a coordinate
system as shown in Fig. 1(a). Let an electromagnetic
wave propagate in the z direction. The wave equation
for this system, assuming a time-harmonic dependence
[exp (jwt)], is given by [10]

(Ve + B¢ =0 (1
where
k= kg — k2
ko? = wlnoeo
ks = 21/\,.

The quantity A, is the guide wavelength, and V,? is the
two-dimensional transverse Laplacian operator. The
wave function Y = H, for TE (transverse electric) wave
modes, and Y =E, for TM (transverse magnetic) wave
modes. The eigenfunction ¥ must satisfy either Dirichlet
or Neumann boundary conditions. The eigenvalue prob-
lem consists of finding suitable solutions of (1) subjected
to the pertinent boundary conditions, and determining
the eigenvalues k. With the knowledge of longitudinal
components E, or H,, the transverse field components
can be computed by [10]

By = (jhof/ B)[ = ViE: + (opo/R)E X (VH)]  (2)
ﬁt = (_jkz/kQ)[(weo,/kz)Z X (Vth) + VtHz] (3)

where 2 is a unit vector in the z direction. The guide
impedance, power transfer, and the attenuation due to
the finite conductivity of the guide walls can be evalu-
ated by conventional methods.
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(a) A waveguide with an arbitrary cross section and a

relevant coordinate system. (b) The angle oy, at point (74, 8,)

on the cross-sectional contour.

For waveguides with simple geometrical cross sec-
tions, the eigenfunction ¢ is obtained by solving (1), in
which the variables are usually separable. If the guide’s
cross-sectional coordinate system is not one of the
separable coordinate systems, namely, rectangular,
polar, elliptical, or parabolic, the method of separation
of variables fails. However, the general solution of (1)
in one of the separable coordinate systems is still a solu-
tion of a waveguide with an arbitrary cross section. The
problem is then how to impose the boundary conditions
for this solution and how to find the eigenvalues.

It is convenient to express the general solution of (1)
in polar coordinates as follows:

¥ = i Ju(kr) (A, cos nd + B, sin nf) (4)

n=0

where 7 and § are the polar coordinates. J, is the Bessel
function of first kind, 4, and B, are constants to be
determined by the boundary conditions. Assuming that
the series in (4) converges rapidly and uniformly for the
cases under consideration, the solution may be approxi-
mated by a finite number of terms

N
¥ = > J.(kr) (A4, cos n + B, sin nf). (5)

n=0

In general, it is difficult to have (4) or (5) satisfy the
boundary conditions at every point around the closed
contour C of a generally shaped guide such as the one
sketched in Fig. 1(a). However, it is possible to require
(5) to satisfy the boundary conditions at a finite number
of points, namely 2N+ 1. Let the points (ro, 8), (11, 61),
(r2, 62), - - -, (Fmy Om), - - -, (7o, Oon) be a set of chosen
points around the cross section. The boundary condi-
tions at these points for TM modes require

N
> (A, cos nby, + By, sin n6,) T n(krm) = 0 (6)

n=0

and for TE modes require

N
Vs D (An COS W + By sin nl,)Tn(krn) =0 (7)

n==0

where m=0, 1, 2, - - -, 2N, and # is the unit vector
normal to the surface. More precisely (7) may be writ-
ten in the following form:

N

krm 2 (A, cOS #by, + By sin #0,) 7, (krm)

n=0

N
+ tanay Y, n(— A, sin w6, + B, cos 1n8,)Jx(krm) = 0 (8

n=0

where cos a,=7%-%,, and 7, is the unit vector in the 7
direction at point (7, 8,.) as shown in Fig. 1(b). The
angle o, may be described in the following manner. Let
the contour C of the cross section be described by

f(% 3) = 0;
where
x=7rcosf and y=rsind
then
tan o, = — (1 + F,, tan 0)/(F, — tan 6)
where
Fo = F(&m, Ym) = %

Y=Umi T=Tp,

Each of (6) and (8) forms a system of 2N +4+1 homo-
geneous algebraic equations of 2N+4+2 unknowns;
namely, 4,, B,, and k. To obtain nontrivial solutions of
the expansion coefficients 4, and B,, the determinant
of these coefficients must be zero. That is

D(k) = det [dy| =0 ©
where
dij = ]i(krj) Ccos iej; i = 0, 1, 2, e, N
dy =Jin(krj)sin(i — N)b;; i=N+1,.-..,2N
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Fig. 2.

Contours of the waveguide’s cross section;

original;

for TM modes; and
d.; = kr;cosi,J (kr,) — i tan a;sin i (kr;);
i=01,2,-++,N
di; = krysin (i — N)0,J i_n(kry)
+ (i — N) tana, cos (i — N)8,J s~ (k75);
i=N+1,---,2N

for TE modes. The roots of (9) determine the eigen-
values k. There are an infinite number of roots, each of
which corresponds to a wave mode. In general, the roots
of higher order modes (larger values of k) calculated by
this numerical method are less accurate than the roots
of lower order modes. The accuracy may be improved,
however, by extending N to larger numbers. In other
words, more points on the contour are chosen to satisfy
the boundary conditions.

Having determined the eigenvalue % for a specific
mode, the expansion coefficients 4, and B, can readily
be found from (6) or (8).

1II. QUALITATIVE DISCUSSIONS OF THE
PoiNT-MATCHING METHOD

In the previous discussion, the eigenfunction ¥ is ex-
pressed in terms of a set of functions

and the boundary conditions are satisfied at only a
finite number of points around the conducting surface.
The completeness of the set of functions {¢n} and the
fulfillment of boundary conditions are not established,
and will not be proved in this paper. Instead, the valid-
ity of the point-matching method will be presented from
a qualitative point of view as follows.

For a given TM wave mode, the expansion coefficients
A, and B,, and the eigenvalue % in (5) can be found by
the method described previously. Since (5) is a real
analytic function of » and 8, and is periodic in the angu-
lar direction, then the equation

N

>~ (A, cos nbs + By sin nbe)J . (krs) = 0

n=0

(10)

obtained by (10).

describes a closed curve. The subscript ¢ denotes the
boundary. The curve connects the chosen points, and
may deviate from the original contour of the cross section
as shown in Fig. 2. Having described the field by (35),
and the boundary conditions by (10), then (5) and the
value of % are the exact eigenfunction and the eigen-
value respectively, for a waveguide of this TM mode
with a cross section defined by (10). If the intervals be-
tween the chosen points are sufficiently small, the devia-
tion between the original curve and that described by
(10) is expected to be negligibly small. Therefore, (5)
and & computed by the point-matching method can be
considered as a good approximate solution for the orig-
inal waveguide.

Similar argument can be applied when (5) represents
H, for the TE wave modes. When the boundary condi-
tions are applied at the chosen points, the resulting
equation is

N
kr, Z (A, cos nb, + B, sin n,)J ' (kr.)

n=0

N
4 tana 2, n(— A, sin 18, + By, cos n8) S (kre) = 0 (11)

n=0
where
d d
tan @ = — (1 + tanﬁ—y>/(—2 — tan0>
dx dx ¢
1 dr
B r d@ [ed

The solution of (11), which is a nonlinear first-order
differential equation, is not known at the present time.
Since the equation is analytic everywhere, it can be
linearized so that it is valid only in small regions around
the chosen points. If the intervals between the points
are made sufficiently small, the neighboring regions over-
lap as illustrated in Fig. 3. Solutions start at the chosen
points along the direction perpendicular to the known
normal vectors at the points. Two neighboring normal
vectors are assumed almost to be parallel. Since the
trajectories of a nonlinear differential equation cannot
intersect each other for a normal system [11], the solu-
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regiom\of validity for solution
starting\from point 2.

Fig. 3. Solutions of (11) at two adjacent points.

exact;

tions extended from two neighboring points are then
connected smoothly. The possibility of intersection is
due to the approximation of linearization. This argu-
ment is confirmed by the excellent agreement of the cut-
off wave numbers calculated by this method with the
exact solutions as shown in Section V. Therefore, (11)
represents a closed contour at which H, satisfies Neu-
mann boundary condition. This contour is expected to
be a close approximation of the original cross section if
the intervals between the chosen points are sufficiently
small.

IV. LiMITATIONS OF THE METHOD

While the point-matching method offers a new way
for solving boundary-value problems of waveguides of
arbitrary cross sections, it does have limitations to its
applications which can be seen from previous analysis,
namely:

1) The boundary line of the waveguide’s cross section
must be closed, since (10) and (11) describe closed con-
tours which are good approximations of the waveguide’s
cross section.

2) The representative function of the closed curve
must be single-valued in the 7 direction. For every con-
stant 0, there is one and only one value of » on the same
contour [(10) and (11) actually describe a family of
closed contours; one encloses the other| where (10) and
(11) are satisfied.

V. EXAMPLES

The first example one may think of is the circular
waveguide. If a is the radius, then the radial coordinates
of the chosen points around the periphery are ro=r;
=7y =a, and (9) is readily reducible to the
exact solutions.

To demonstrate the accuracy of the point-matching
method applied to waveguides with noncircular cross
sections, the cutoff wave numbers of elliptical and square
waveguide were calculated and compared with the exact
solutions.

The cross section of the elliptical waveguide under
consideration is defined by

(x/1.5431)2 + (y/1.1752)? = g2,

=1’2= PR

Since the ellipse is symmetric with respect to the x axis,

linearized.

the field distributions inside the guide are either sym-
metric or antisymmetric. In the following discussion,
wave modes with longitudinal field component sym-
metric with respect to the x axis are called even modes,
and the modes with longitudinal field antisymmetric
with respect to the x axis are called odd modes. With
this classification, the sine terms in (5) are omitted for
even modes, while the cosine terms are omitted for odd
modes. For the present ellipse, only nine points were
chosen on the upper periphery for even modes, and
seven points were chosen for odd modes. Table I lists
the cutoffi wave numbers for the TM and TE modes
calculated by the point-matching method and compared
with those calculated from Chu’s curves [12], and those
calculated by the method of conformal mapping [9].
Note that the accuracy of the wave numbers calculated
from Chu’s curves are good only to two places.

Similar calculations for a square waveguide, as a sec-
ond example, show that excellent accuracy can be
achieved using the point-matching method, even though
sharp corners are present. If a square of width 2a¢ is
placed with its center at the origin of the coordinate
system, then symmetry with respect to the x axis is
obtained. The cutofi wave numbers kz of TM modes
calculated by the point-matching method are listed in
Table II and compared with the exact values. Thirteen
points were used to calculate the values of cutoff wave
numbers for both even and odd modes. The error in the
calculation for the lowest order mode TMy; is less than
0.05 percent. From Table II, the double degeneracy of
TMy; and TMg can be observed, when finding the roots
of (9). The function D(k) passes through a minimum
which is almost zero at ka =4.9670. In the case of TM,,
and TMy, the two roots are very close together. The
separation, however, using eleven points is larger than
that when thirteen points are used for the calculation.

The cutoff wave numbers of even TE modes calcu-
lated by using thirteen points are listed in Table I1I.
The double degeneracy of TEs and TE is also ob-
served.

At the corner points of the preceding calculations, the
normals were taken in the direction of the bisectors of
the angles. This choice is shown to be valid by the ex-
cellent agreement between the exact and the approxi-
mate values.
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TABLE I

ComparisoN oF CurorF WAVE NUMBERS, ke OF AN
EvrvrpricAL WAVEGUIDE

; . . Point- Conformal
Mode | Classification hl/{/?(;ca}llcl)lég Chu Mapping
TMy even 1817 1.8 —
TMyu even 2.694 2.7 —
TMy odd 3.080 3.1 3.08
TMy; odd 3.873 — 3.88
TEy, even 1.204 1.2 1.204
TEn even 3.023 3.0 —

TABLE II

CoMPARISON OF TM CutorrF WAVE NUMBER ka OF A SQUARE
WAVEGUIDE oF WIDTH 2a

™ Classification Poinﬁ]thIﬁéglhing Exact
11 even 2.2204 2.2214
21 even 3.5102 3.5124
13,31 even 4.9670 4.9673
23 even 5.6505 5.6636
41 even 6.5523 6.4766
33 even 6.6651 6.6643
43 even 7.9779 7.8540
22 odd 4.4428 4.4429
32 odd 5.6622 5.6636
14 odd 6.4763 6.4766
24,42 odd 7.0243 7.0248
7.0253
34 odd 7.8102 7.8540
52 odd 8.4053 8.4590
TABLE III

Comparison oF EVEN TE Wave NUMBERS ke OF A SQUARE
WAVEGUIDE OF WIDTH 24

TE PoineMatching Exact
10 1.5708 1.5708
20,02 3.142 3.1416
12 3.5129 3.5124
2 4.4427 4 4429
30 1.7138 1.7124
32 5.6671 5.6636
40 6.4673 6.2832

VI. CoxcLusioN

The point-matching method offers a new way of solv-
ing boundary-value problems of hollow-piped uniform
waveguides when the method of separation tails. This
numerical technique was applied to square and ellipti-
cal waveguides in order to demonstrate that excellent
accuracy in calculating the cutoff wave numbers can
easily be determined. The boundary conditions were im-
posed at only a finite number of points along the con-
tour of the cross section. The boundary conditions at
points other than the chosen ones are satisfied approxi-
mately if the contour of the waveguide’s cross sectior is
closed and its representative function is single-valued.
When a particular waveguide is considered by the point-
matching method, then there exists a contour where the
boundary conditions are satisfied, and it deviates from
the original cross section. The deviation will be im-
proved by increasing the number of chosen points. The
degeneracies can also be observed by this method.

Having found the cutoff wave numbers for a wave-
guide, the wave function can then be determined. The
transferred power, attenuation constant, the field pat-
tern, and the current distribution are readily obtainable
by numerical methods.
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